Central S1-extensions of Symplectic Groupoids and the Poisson Classes

نویسندگان

  • Haruo Suzuki
  • HARUO SUZUKI
چکیده

It is shown that a central extension of a Lie groupoid by an Abelian Lie group A has a principal A-bundle structure and the extended Lie groupoid is classified by an Euler esclass. Then we prove that for a symplectic α-connected, αβtransversal or α-simply connected groupoid, there exists at most one central S-extension, the Euler es-class of which corresponds to the Poisson cohomology class of the Poisson manifold of units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 A pr 2 00 3 Picard groups in Poisson geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

J un 2 00 3 Picard groups in Poisson geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

Quantized reduction as a tensor product

Symplectic reduction is reinterpreted as the composition of arrows in the category of integrable Poisson manifolds, whose arrows are isomorphism classes of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category. This description paves the way for the quantization of the classical reduction procedure, which is ba...

متن کامل

Functoriality and Morita Equivalence of C * -algebras and Poisson Manifolds Associated to Lie Groupoids

It is well known that a Lie groupoid G canonically defines both a C *-algebra C * (G) and a Poisson manifold A * (G). We show that the maps G → C * (G) and G → A * (G) are functorial with respect to suitably defined categories. The arrows (Hom-spaces) between Lie groupoids are taken to be isomorphism classes of regular bibundles (Hilsum–Skandalis maps), composed by a canonical bibundle tensor p...

متن کامل

Picard Groups in Poisson Geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002